Hyperspectral Unmixing via Double Abundance Characteristics Constraints Based NMF
نویسندگان
چکیده
Abstract: Hyperspectral unmixing aims to obtain the hidden constituent materials and the corresponding fractional abundances from mixed pixels, and is an important technique for hyperspectral image (HSI) analysis. In this paper, two characteristics of the abundance variables, namely, the local spatial structural feature and the statistical distribution, are incorporated into nonnegative matrix factorization (NMF) to alleviate the non-convex problem of NMF and enhance the hyperspectral unmixing accuracy. An adaptive local neighborhood weight constraint is proposed for the abundance matrix by taking advantage of the spatial-spectral information of the HSI. The spectral information is utilized to calculate the similarities between pixels, which are taken as the measurement of the smoothness levels. Furthermore, because abrupt changes may appear in transition areas or outliers may exist in spatially neighboring regions, any inappropriate smoothness constraint on these pixels is removed, which can better express the local smoothness characteristic of the abundance variables. In addition, a separation constraint is used to prevent the result from over-smoothing, preserving the inner diversity of the same kind of material. Extensive experiments were carried out on both simulated and real HSIs, confirming the effectiveness of the proposed approach.
منابع مشابه
جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملNonnegative Matrix Factorization With Data-Guided Constraints For Hyperspectral Unmixing
Abstract: Hyperspectral unmixing aims to estimate a set of endmembers and corresponding abundances in pixels. Nonnegative matrix factorization (NMF) and its extensions with various constraints have been widely applied to hyperspectral unmixing. L1/2 and L2 regularizers can be added to NMF to enforce sparseness and evenness, respectively. In practice, a region in a hyperspectral image may posses...
متن کاملHALS-based NMF with flexible constraints for hyperspectral unmixing
In this article, the hyperspectral unmixing problem is solved with the nonnegative matrix factorization (NMF) algorithm. The regularized criterion is minimized with a hierarchical alternating least squares (HALS) scheme. Under the HALS framework, four constraints are introduced to improve the unmixing accuracy, including the sum-to-unity constraint, the constraints for minimum spectral dispersi...
متن کاملDistributed Unmixing of Hyperspectral Data With Sparsity Constraint
Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which w...
متن کاملSparsity Constrained Graph Regularized NMF for Spectral Unmixing of Hyperspectral Data
Hyperspectral images contain mixed pixels due to low spatial resolution of hyperspectral sensors. Mixed pixels are pixels containing more than one distinct material called endmembers. The presence percentages of endmembers in mixed pixels are called abundance fractions. Spectral unmixing problem refers to decomposing these pixels into a set of endmembers and abundance fractions. Due to nonnegat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016